Facet-defining inequalities for the simple graph partitioning polytope
نویسندگان
چکیده
منابع مشابه
Facet defining inequalities among graph invariants: The system GraPHedron
We present a new computer system, called GraPHedron, which uses a polyhedral approach to help the user to discover optimal conjectures in graph theory. We define what should be optimal conjectures and propose a formal framework allowing to identify them. Here, graphs with n nodes are viewed as points in the Euclidian space, whose coordinates are the values of a set of graph invariants. To the c...
متن کاملSize - constrained graph partitioning polytope
We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the equi-partition problem and the k-...
متن کاملFacets for node-capacitated multicut polytopes from path-block cycles with two common nodes
Path-block-cycle inequalities are valid, and sometimes facet-defining, inequalities for polytopes in connection with graph partitioning problems and corresponding multicut problems. Special cases of the inequalities were introduced by De Souza & Laurent (1995) and shown to be facet-defining for the equicut polytope. Generalizations of these inequalities were shown by Ferreira et al. (1996) to b...
متن کاملSize-constrained graph partitioning polytope. Part II: Non-trivial facets
We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the equi-partition problem and the k-...
متن کاملGap Inequalities for the Cut Polytope
We introduce a new class of inequalities valid for the cut polytope, which we call gap inequalities. Each gap inequality is given by a nite sequence of integers, whose \gap" is deened as the smallest discrepancy arising when decomposing the sequence into two parts as equal as possible. Gap inequalities include the hypermetric inequalities and the negative type inequalities, which have been exte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Optimization
سال: 2007
ISSN: 1572-5286
DOI: 10.1016/j.disopt.2006.08.001